PyTorch INFERNO
Documentation: https://gilesstrong.github.io/pytorch_inferno/
This package provides a PyTorch implementation of INFERNO (de Castro and Dorigo, 2018), along with a minimal high-level wrapper for training and applying PyTorch models, and running statistical inference of parameters of interest in the presence of nuisance parameters. INFERNO is implemented in the form of a callback, allowing it to be dropped in and swapped out with heavy rewriting of code.
For an overview of the package, a breakdown of the INFERNO algorithm, and an introduction to parameter inference in HEP, I have written a 5-post blog series: https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/04/inferno-1.html
The authors' Tensorflow 1 code may be found here: https://github.com/pablodecm/paper-inferno And Lukas Layer's Tenforflow 2 version may be found here: https://github.com/llayer/inferno
User install
pip install pytorch_inferno
Developer install
[install torch>=1.7 according to CUDA version]
pip install nbdev fastcore numpy pandas fastprogress matplotlib>=3.0.0 seaborn scipy
git clone git@github.com:GilesStrong/pytorch_inferno.git
cd pytorch_inferno
pip install -e .
nbdev_install_git_hooks
Reference
If you have used this implementation of INFERNO in your analysis work and wish to cite it, the preferred reference is: Giles C. Strong, pytorch_inferno, Zenodo (Mar. 2021), http://doi.org/10.5281/zenodo.4597140, Note: Please check https://github.com/GilesStrong/pytorch_inferno/graphs/contributors for the full list of contributors
@misc{giles_chatham_strong_2021_4597140,
author = {Giles Chatham Strong},
title = {LUMIN},
month = mar,
year = 2021,
note = ,
doi = {10.5281/zenodo.4597140},
url = {https://doi.org/10.5281/zenodo.4597140}
}
The INFERNO algorithm should also be cited:
@article{DECASTRO2019170,
title = {INFERNO: Inference-Aware Neural Optimisation},
journal = {Computer Physics Communications},
volume = {244},
pages = {170-179},
year = {2019},
issn = {0010-4655},
doi = {https://doi.org/10.1016/j.cpc.2019.06.007},
url = {https://www.sciencedirect.com/science/article/pii/S0010465519301948},
author = {Pablo {de Castro} and Tommaso Dorigo},
}